Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Savaridasson Jose Kavitha, Srinivasan Chandrasekar and Krishnaswamy
Panchanatheswaran*
Department of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
Correspondence e-mail:
panch45@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.048$
$w R$ factor $=0.140$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-1,2-Bis(3-chlorophenyl)diazene oxide

The title molecule, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$, lacks a centre of symmetry. However, as a result of the positional disorder of the O atom, molecules of the title compound lie across a crystallographic inversion centre in the centrosymmetric space group $P 2_{1} / n$. The trans orientation of the aromatic rings around the $\mathrm{N}=\mathrm{N}$ bond is confirmed.

Comment

Diazene oxide derivatives, commonly known as azoxybenzenes, are useful in the preparation of liquid crystals (Tsuji et al., 2000). They are also used as ligands in coordination chemistry (Bassi \& Scordamaglia, 1975). They are photochemically active (Rhee \& Jaffe, 1973), like the related azo (Tamai \& Miyasika, 2000) and nitrone derivatives (Hamer \& Macaluso, 1964). Preparation of non-centrosymmetric azoxybenzene derivatives will be of interest for the study of their non-linear optical properties (Long, 1995) because of electron delocalization within the molecule. The structures of parasubstituted azoxybenzenes are known, and most of them assume trans configurations of the benzene ring around the $\mathrm{N}=\mathrm{N}$ bond in the solid state (Ejsmont et al., 2000). During our investigations of the use of tin(II) chloride for the reductive coupling of nitro compounds with aldehydes and ketones, the title compound, (I), was isolated. The structure determination was undertaken to assign its configuration and the spacegroup symmetry.

(I)

Although the molecule lacks a centre of symmetry, it lies across the inversion centre in the centrosymmetric space group $P 2_{1} / n$, due to the positional disorder of the O atom. The asymmetric unit therefore consists of one half of the title molecule. Furthermore, the molecule adopts a thermodynamically stable configuration in which the two chlorophenyl groups are oriented trans with respect to the $\mathrm{N}=\mathrm{N}$ bond.

The $\mathrm{C}-\mathrm{C}$ bond lengths in the chlorophenyl groups vary from 1.368 (6) to 1.384 (5) \AA. The $\mathrm{N}=\mathrm{N}[1.267$ (5) \AA] bond distance is comparable to the corresponding bond distance of $1.27 \AA$ observed in trans azoxybenzene through electron diffraction studies. The computed values for the above bond in the same molecule is $1.232 \AA$ at the RHF/6-31G** level of calculations (Tsuji et al., 2000). The $\mathrm{N}=\mathrm{N}$ bond distance in

Received 19 May 2003
Accepted 3 June 2003
Online 17 June 2003

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. The O atom is disordered over two inversion-related positions, O 1 and $\mathrm{O}_{1}{ }^{\mathrm{i}}$ [symmetry code: (i) $1-x$, $1-y, 1-z$.

5,5'-dichloro-2-hydroxy-2'-(phenylsulfonyl)azoxybenzene is 1.31 (1) \AA (Cameron et al., 1976), which is different from that in the title compound. As a consequence of disorder in the title molecule, the $\mathrm{N}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ distances are elongated compared to the corresponding distances of 1.27 (1) \AA and 1.43 (1) \AA in p-azoxyanisole (Krigbaum et al., 1970).

In the crystal structure, the inversion-related molecules are linked by $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1(2-x, 2-y, 1-z)$ hydrogen bonds (Table 2) involving the disordered O atom, to form molecular chains along [110].

Experimental

The compound was formed by the reduction of 1-chloro-3-nitrobenzene $(2.0 \mathrm{~g})$ by $\operatorname{tin}(\mathrm{II})$ chloride $(2.5 \mathrm{~g})$ in tetrahydrofuran. The product was isolated by the addition of dilute hydrochloric acid followed by extraction with diethyl ether. Yield was 45.5%. Diffraction quality crystals were obtained by recrystallization of the crude product in hexane.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=267.10$
Monoclinic, $P 2_{1} / n$
$a=3.911$ (5) \AA
$b=5.893$ (5) \AA
$c=25.367(5) \AA$
$\beta=94.155$ (5) ${ }^{\circ}$
$V=583.1(9) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.813, T_{\text {max }}=0.898$
1179 measured reflections
1021 independent reflections
807 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.140$
$S=1.11$
1021 reflections
82 parameters
H -atom parameters constrained
$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 1179
reflections
$\theta=3.2-24.6^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 4$
$k=0 \rightarrow 7$
$l=-30 \rightarrow 30$
3 standard reflections every 100 reflections intensity decay: neglible

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0644 P)^{2}\right. \\
& \quad+0.337 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
Packing of the molecules, viewed down the a axis, showing the chain formation.

Table 1

Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 3$	$1.735(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.384(5)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.367(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.373(4)$
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.267(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.381(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.449(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.368(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.372(6)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{O} 1$	$134.6(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.6(3)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1$	$117.7(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$118.8(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$107.7(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11$	$119.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.7(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.9(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$124.5(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.0(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$114.8(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.3(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.4(3)$		
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-6.4(5)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$174.1(3)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$172.5(3)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-7.0(4)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.08	$2.735(6)$	126
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{1}$	0.93	2.05	$2.450(7)$	104
$\mathrm{C}^{\mathrm{H}} \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.48	$3.271(7)$	144

[^0]The O atom is disordered over two centrosymmetrically-related positions, O 1 and $\mathrm{O} 1^{i}$ [symmetry code: (i) $1-x, 1-y, 1-z$]. H atoms were placed in geometrical positions and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bassi, I. W. \& Scordamaglia, R. (1975). J. Organomet. Chem. 99, 127-134.
Cameron, T. S., Cummings, R. J. \& Knipe, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 802-805.
Ejsmont, K., Domanski, A., Kyziot, J. \& Zaleski, J. (2000). Acta Cryst. C56, 697-699.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hamer, H. \& Macaluso, A. (1964). Chem. Rev. 64, 473-494.
Krigbaum, W. R., Chatani, Y. \& Barber, P. G. (1970). Acta Cryst. B26, 97.
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rhee, S. \& Jaffe, H. H. (1973). J. Am. Chem. Soc. 95, 5518-5521.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek. A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tamai, N. \& Miyasika, H. (2000). Chem. Rev. 100, 1875-1890.
Tsuji, T., Takashima, H., Takeuchi, H., Egawa, T. \& Konaka, S. (2000). J. Mol. Struct. 554, 203-210.

[^0]: Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 2-y, 1-z$.

